# Chapter 12 Vector-Valued Functions 

## Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

March 31, 2022

## Table of Contents

(1) Vector-valued functions
(2) Differentiation and integration of vector-valued functions

## Table of Contents

(1) Vector-valued functions

## (2) Differentiation and integration of vector-valued functions

## Space curves and vector-valued functions

- A plane curve is defined as the set of ordered pairs $(f(t), g(t))$ together with their defining parametric equations

$$
x=f(t) \quad \text { and } \quad y=g(t)
$$

where $f$ and $g$ are continuous functions of $t$ on an interval $l$.

- This definition can be extended naturally to three-dimensional space as follows.
- A space curve $C$ is the set of all ordered triples $(f(t), g(t), h(t))$ together with their defining parametric equations

$$
x=f(t), \quad y=g(t), \quad \text { and } \quad z=h(t)
$$

where $f, g$, and $h$ are continuous functions of $t$ on an interval $l$.

- A new type of function, called a vector-valued function, is introduced.
- This type of function maps real numbers to vectors.


## Definition 12.1 (Vector-valued function)

A function of the form

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j} \quad \text { (Plane) }
$$

or

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k} \quad(\text { Space })
$$

is a vector-valued function, where the component functions $f, g$, and $h$ are real-valued functions of the parameter $t$. Vector-valued functions are sometimes denoted as $\mathbf{r}(t)=\langle f(t), g(t)\rangle$ or $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$.

- Technically, a curve in the plane or in space consists of a collection of points and the defining parametric equations. Two different curves can have the same graph.
- For instance, each of the curves given by

$$
\mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j} \quad \text { and } \quad \mathbf{r}(t)=\sin t^{2} \mathbf{i}+\cos t^{2} \mathbf{j}
$$

has the unit circle as its graph, but these equations do not represent the same curve-because the circle is traced out in different ways.

- Be sure you see the distinction between the vector-valued function $\mathbf{r}$ and the real-valued functions $f, g$, and $h$.
- All are functions of the real variable $t$, but $\mathbf{r}(t)$ is a vector, whereas $f(t), g(t)$, and $h(t)$ are real numbers (for each specific value of $t$ ).
- Vector-valued functions serve dual roles in the representation of curves.
- By letting the parameter $t$ represent time, you can use a vector-valued function to represent motion along a curve.
- Or, in the more general case, you can use a vector-valued function to trace the graph of a curve.


Figure 1: Curve $C$ is traced out by the terminal point of position vector $\mathbf{r}(t)$.

- In either case, the terminal point of the position vector $\mathbf{r}(t)$ coincides with the point $(x, y)$ or $(x, y, z)$ on the curve given by the parametric equations, as shown in Figure 1.
- The arrowhead on the curve indicates the curve's orientation by pointing in the direction of increasing values of $t$.
- Unless stated otherwise, the domain of a vector-valued function $\mathbf{r}$ is considered to be the intersection of the domains of the component functions $f, g$, and $h$.
- For instance, the domain of $\mathbf{r}(t)=\ln t \mathbf{i}+\sqrt{1-t} \mathbf{j}+t \mathbf{k}$ is the interval $(0,1]$.


## Example 1 (Sketching a plane curve)

Sketch the plane curve represented by the vector-valued function

$$
\mathbf{r}(t)=2 \cos t \mathbf{i}-3 \sin t \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

- From the position vector $\mathbf{r}(t)$, you can write the parametric equations $x=2 \cos t$ and $y=-3 \sin t$.
- Solving for $\cos t$ and $\sin t$ and using the identity $\cos ^{2} t+\sin ^{2} t=1$ produces the rectangular equation

$$
\frac{x^{2}}{2^{2}}+\frac{y^{2}}{3^{2}}=1 . \quad \text { Rectangular equation }
$$

- The graph of this rectangular equation is the ellipse shown in Figure 2.
- The curve has a clockwise orientation.
- That is, as $t$ increases from 0 to $2 \pi$, the position vector $\mathbf{r}(t)$ moves clockwise, and its terminal point traces the ellipse.


Figure 2: The ellipse $\mathbf{r}(t)=2 \cos t \mathbf{i}-3 \sin t \mathbf{j}$ is traced clockwise as $t$ increases from 0 to $2 \pi$.

## Example 2 (Sketching a space curve)

Sketch the space curve represented by the vector-valued function

$$
\mathbf{r}(t)=4 \cos t \mathbf{i}+4 \sin t \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq 4 \pi
$$

- From the first two parametric equations $x=4 \cos t$ and $y=4 \sin t$, you can obtain

$$
x^{2}+y^{2}=16 . \quad \text { Rectangular equation }
$$

- This means that the curve lies on a right circular cylinder of radius 4 , centered about the $z$-axis.
- To locate the curve on this cylinder, you can use the third parametric equation $z=t$.
- In Figure 3, note that as $t$ increases from 0 to $4 \pi$, the point $(x, y, z)$ spirals up the cylinder to produce a helix.


Figure 3: As $t$ increases from 0 to $4 \pi$, two spirals on the helix are traced out.

## Example 3 (Representing a graph by a vector-valued function)

Represent the parabola given by $y=x^{2}+1$ by a vector-valued function.

- Although there are many ways to choose the parameter $t$, a natural choice is to let $x=t$.
- Then $y=t^{2}+1$ and you have

$$
\mathbf{r}(t)=t \mathbf{i}+\left(t^{2}+1\right) \mathbf{j}
$$

- Note in Figure 4 the orientation produced by this particular choice of parameter.
- Had you chosen $x=-t$ as the parameter, the curve would have been oriented in the opposite direction.


Figure 4: There are many ways to parametrize this graph. One way is to let $x=t$.

## Example 4 (Representing a graph by a vector-valued function)

Sketch the space curve $C$ represented by the intersection of the semiellipsoid

$$
\frac{x^{2}}{12}+\frac{y^{2}}{24}+\frac{z^{2}}{4}=1, \quad z \geq 0
$$

and the parabolic cylinder $y=x^{2}$. Then, find a vector-valued function to represent the graph.

- The intersection of the two surfaces is shown in Figure 5.
- As in Example 3, a natural choice of parameter is $x=t$.
- For this choice, you can use the given equation $y=x^{2}$ to obtain $y=t^{2}$. Then, it follows that

$$
\frac{z^{2}}{4}=1-\frac{x^{2}}{12}-\frac{y^{2}}{24}=1-\frac{t^{2}}{12}-\frac{t^{4}}{24}=\frac{24-2 t^{2}-t^{4}}{24}=\frac{\left(6+t^{2}\right)\left(4-t^{2}\right)}{24}
$$

- Because the curve lies above the $x y$-plane, you should choose the positive square root for $z$ and obtain the following equations.

$$
x=t, \quad y=t^{2}, \quad \text { and } z=\sqrt{\frac{\left(6+t^{2}\right)\left(4-t^{2}\right)}{6}}
$$

- The resulting vector-valued function is

$$
\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\sqrt{\frac{\left(6+t^{2}\right)\left(4-t^{2}\right)}{6}} \mathbf{k}, \quad-2 \leq t \leq 2
$$

(Note that the $\mathbf{k}$-component of $\mathbf{r}(t)$ implies $-2 \leq t \leq 2$.)

- From the points $(-2,4,0)$ and $(2,4,0)$ shown in Figure 5 , you can see that the curve is traced as $t$ increases from -2 to 2 .


Figure 5: The curve $C$ is the intersection of the semiellipsoid and the parabolic cylinder.

## Limits and continuity

- To add or subtract two vector-valued functions (in the plane), you can write

$$
\begin{aligned}
\mathbf{r}_{1}+\mathbf{r}_{2} & =\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]+\left[f_{2}(t) \mathbf{i}+g_{2}(t) \mathbf{j}\right] \\
& =\left[f_{1}(t)+f_{2}(t)\right] \mathbf{i}+\left[g_{1}(t)+g_{2}(t)\right] \mathbf{j} \\
\mathbf{r}_{1}-\mathbf{r}_{2} & =\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]-\left[f_{2}(t) \mathbf{i}+g_{2}(t) \mathbf{j}\right] \\
& =\left[f_{1}(t)-f_{2}(t)\right] \mathbf{i}+\left[g_{1}(t)-g_{2}(t)\right] \mathbf{j} .
\end{aligned}
$$

- To multiply and divide a vector-valued function by a scalar, you can write

$$
\begin{aligned}
c \mathbf{r}(t) & =c\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]=c f_{1}(t) \mathbf{i}+c g_{1}(t) \mathbf{j} \\
\frac{\mathbf{r}(t)}{c} & =\frac{\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]}{c}=\frac{f_{1}(t)}{c} \mathbf{i}+\frac{g_{1}(t)}{c} \mathbf{j}, \quad c \neq 0 .
\end{aligned}
$$

## Definition 12.2 (The limit of a vector-valued function)

1. If $\mathbf{r}$ is a vector-valued function such that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j} \quad \text { Plane }
$$

provided $f$ and $g$ have limits as $t \rightarrow a$.
2. If $\boldsymbol{r}$ is a vector-valued function such that

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}, \text { then }
$$

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j}+\left[\lim _{t \rightarrow a} h(t)\right] \mathbf{k} \quad \text { Space }
$$

provided $f, g$, and $h$ have limits as $t \rightarrow a$.

- If $\mathbf{r}(t)$ approaches the vector $\mathbf{L}$ as $t \rightarrow a$, the length of the vector $\mathbf{r}(t)-\mathbf{L}$ approaches 0 .
- That is, $\|\mathbf{r}(t)-\mathbf{L}\| \rightarrow 0$ as $t \rightarrow a$. This is illustrated graphically in Figure 6.


Figure 6: As $t$ approaches $a, \mathbf{r}(t)$ approaches the limit $\mathbf{L}$. For the limit $\mathbf{L}$ to exist, it is not necessary that $\mathbf{r}(a)$ be defined or that $\mathbf{r}(a)$ be equal to $\mathbf{L}$.

## Definition 12.3 (Continuity of a vector-valued function)

A vector-valued function $\mathbf{r}$ is continuous at a point given by $t=a$ if the limit of $\mathbf{r}(t)$ exists as $t \rightarrow a$ and

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)
$$

A vector-valued function $\mathbf{r}$ is continuous on an interval $/$ if it is continuous at every point in the interval.

A vector-valued function is continuous at $t=a$ if and only if each of its component function is continuous at $t=a$.

## Example 5 (Continuity of vector-valued functions)

Discuss the continuity of the vector-valued function given by

$$
\mathbf{r}(t)=t \mathbf{i}+a \mathbf{j}+\left(a^{2}-t^{2}\right) \mathbf{k} \quad a \text { is a constant }
$$

at $t=0$.

- As $t$ approaches 0 , the limit is

$$
\begin{aligned}
\lim _{t \rightarrow 0} \mathbf{r}(t) & =\left[\lim _{t \rightarrow 0} t\right] \mathbf{i}+\left[\lim _{t \rightarrow 0} a\right] \mathbf{j}+\left[\lim _{t \rightarrow 0}\left(a^{2}-t^{2}\right)\right] \mathbf{k} \\
& =0 \mathbf{i}+a \mathbf{j}+a^{2} \mathbf{k}=a \mathbf{j}+a^{2} \mathbf{k}
\end{aligned}
$$

- Because

$$
\mathbf{r}(0)=(0) \mathbf{i}+(a) \mathbf{j}+\left(a^{2}\right) \mathbf{k}=a \mathbf{j}+a^{2} \mathbf{k}
$$

you can conclude that $\mathbf{r}$ is continuous at $t=0$.

- By similar reasoning, you can conclude that the vector-valued function $\mathbf{r}$ is continuous at all real-number values of $t$.


## Example 6 (Continuity of vector-valued functions)

Determine the interval(s) on which the vector-valued function $\mathbf{r}(t)=t \mathbf{i}+\sqrt{t+1} \mathbf{j}+\left(t^{2}+1\right) \mathbf{k}$ is continuous.

- The component functions are

$$
f(t)=t, g(t)=\sqrt{t+1}, \text { and } h(t)=\left(t^{2}+1\right)
$$

- Both $f$ and $h$ are continuous for all real-number values of $t$. The function $g$, however, is continuous only for $t \geq-1$. So, $\mathbf{r}$ is continuous the interval $[-1, \infty)$.


## Table of Contents

## (1) Vector-valued functions

(2) Differentiation and integration of vector-valued functions

## Differentiation of vector-valued functions

- The definition of the derivative of a vector-valued function parallels the definition given for real-valued functions.


## Definition 12.4 (The derivative of a vector-valued function)

The derivative of a vector-valued function $\mathbf{r}$ is defined by

$$
\mathbf{r}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}
$$

for all $t$ for which the limit exists. If $\mathbf{r}^{\prime}(t)$ exists, then $\mathbf{r}$ is differentiable at $t$. If $\mathbf{r}^{\prime}(t)$ exists for all $t$ in an open interval $I$, then $\mathbf{r}$ is differentiable on the interval $I$. Differentiability of vector-valued functions can be extended to closed intervals by considering one-sided limits.

- Differentiation of vector-valued functions can be done on a component-by-component basis.
- To see why this is true, consider the function given by

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}
$$

- Applying the definition of the derivative produces the following.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t) \mathbf{i}+g(t+\Delta t) \mathbf{j}-f(t) \mathbf{i}-g(t) \mathbf{j}}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0}\left\{\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}\right] \mathbf{i}+\left[\frac{g(t+\Delta t)-g(t)}{\Delta t}\right] \mathbf{j}\right\} \\
& =\left\{\lim _{\Delta t \rightarrow 0}\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}\right]\right\} \mathbf{i}+\left\{\lim _{\Delta t \rightarrow 0}\left[\frac{g(t+\Delta t)-g(t)}{\Delta t}\right]\right\} \mathbf{j} \\
& =f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}
\end{aligned}
$$

- This important result is listed in the Theorem 12.1.
- Note that the derivative of the vector-valued function $\mathbf{r}$ is itself a vector-valued function.
- You can see from Figure 7 that $\mathbf{r}^{\prime}(t)$ is a vector tangent to the curve given by $\mathbf{r}(t)$ and pointing in the direction of increasing $t$-values.


Figure 7: Definition of the derivative of a vector-valued functions.

## Theorem 12.1 (Differentiation of vector-valued functions)

(1) If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where $f$ and $g$ are differentiable functions of $t$, then

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j} . \quad \text { Plane }
$$

(2) If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where $f, g$, and $h$ are differentiable functions of $t$, then

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k} . \quad \text { Space }
$$

## Example 1 (Differentiation of vector-valued functions)

For the vector-valued function given by $\mathbf{r}(t)=t \mathbf{i}+\left(t^{2}+2\right) \mathbf{j}$, find $\mathbf{r}^{\prime}(t)$. Then sketch the plane curve represented by $\mathbf{r}(t)$, and the graphs of $\mathbf{r}(1)$ and $\mathbf{r}^{\prime}(1)$.

- Differentiate on a component-by-component basis to obtain

$$
\mathbf{r}^{\prime}(t)=\mathbf{i}+2 t \mathbf{j}
$$

- From the position vector $\mathbf{r}(t)$, you can write the parametric equations $x=t$ and $y=t^{2}+2$.
- The corresponding rectangular equation is $y=x^{2}+2$. When $t=1$, $\mathbf{r}(1)=\mathbf{i}+3 \mathbf{j}$ and $\mathbf{r}^{\prime}(1)=\mathbf{i}+2 \mathbf{j}$.
- In Figure $8, \mathbf{r}(1)$ is drawn starting at the origin, and $\mathbf{r}^{\prime}(1)$ is drawn starting at the terminal point of $\mathbf{r}(1)$.


Figure 8: $\mathbf{r}(t)=t \mathbf{i}+\left(t^{2}+2\right) \mathbf{j}$

## Example 2 (Higher-order differentiation)

For the vector-valued function given by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+2 t \mathbf{k}$, find each of the following.
a. $\mathbf{r}^{\prime}(t)$
b. $\mathbf{r}^{\prime \prime}(t)$
c. $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)$
d. $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$
a. $\mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}+\cos t \mathbf{j}+2 \mathbf{k}$
b. $\mathbf{r}^{\prime \prime}(t)=-\cos t \mathbf{i}-\sin t \mathbf{j}+0 \mathbf{k}=-\cos t \mathbf{i}-\sin t \mathbf{j}$
c. $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)=\sin t \cos t-\sin t \cos t=0$
d. $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin t & \cos t & 2 \\ -\cos t & -\sin t & 0\end{array}\right|=\left|\begin{array}{cc}\cos t & 2 \\ -\sin t & 0\end{array}\right| \mathbf{i}-$

$$
\left|\begin{array}{cc}
-\sin t & 2 \\
-\cos t & 0
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
-\sin t & \cos t \\
-\cos t & -\sin t
\end{array}\right| \mathbf{k}=2 \sin t \mathbf{i}-2 \cos t \mathbf{j}+\mathbf{k}
$$

- Note that the dot product in part (c) is a real-valued function, not a vector-valued function.
- The parametrization of the curve represented by the vector-valued function

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

is smooth on an open interval if $f^{\prime}, g^{\prime}$, and $h^{\prime}$ are continuous on $I$ and $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$ for any value of $t$ in the interval $I$.

## Example 3 (Finding intervals on which a curve is smooth)

Find the intervals on which the epicycloid $C$ given by

$$
\mathbf{r}(t)=(5 \cos t-\cos 5 t) \mathbf{i}+(5 \sin t-\sin 5 t) \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

is smooth.

- The derivative of $\mathbf{r}$ is

$$
\mathbf{r}^{\prime}(t)=(-5 \sin t+5 \sin 5 t) \mathbf{i}+(5 \cos t-5 \cos 5 t) \mathbf{j}
$$

- In the interval $[0,2 \pi]$, the only values of $t$ for which

$$
\mathbf{r}^{\prime}(t)=0 \mathbf{i}+0 \mathbf{j}
$$

are $t=0, \pi / 2, \pi, 3 \pi / 2$, and $2 \pi$.

- Therefore, you can conclude that $C$ is smooth in the intervals $\left(0, \frac{\pi}{2}\right)$, $\left(\frac{\pi}{2}, \pi\right),\left(\pi, \frac{3 \pi}{2}\right)$, and $\left(\frac{3 \pi}{2}, 2 \pi\right)$ as shown in Figure 9.


Figure 9: The epicycloid $\mathbf{r}(t)=(5 \cos t-\cos 5 t) \mathbf{i}+(5 \sin t-\sin 5 t) \mathbf{j}$ is not smooth at the points where it in intersects the axes.

- In the Figure 9, note that the curve is not smooth at points at which the curve makes abrupt changes in direction.
- Such points are called cusps or nodes.


## Theorem 12.2 (Properties of the derivative)

Let $\mathbf{r}$ and $\mathbf{u}$ be differentiable vector-valued functions of $t$, let $w$ be a differentiable real-valued function of $t$, and let $c$ be scalar.
(1) $D_{t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t)$
(2) $D_{t}[\mathbf{r}(t) \pm \mathbf{u}(t)]=\mathbf{r}^{\prime}(t) \pm \mathbf{u}^{\prime}(t)$
(3) $D_{t}[w(t) \mathbf{r}(t)]=w(t) \mathbf{r}^{\prime}(t)+w^{\prime}(t) \mathbf{r}(t)$
(1) $D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]=\mathbf{r}(t) \cdot \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{u}(t)$
(5) $D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t)$
(6) $D_{t}[\mathbf{r}(w(t))]=\mathbf{r}^{\prime}(w(t)) w^{\prime}(t)$
(3) If $\mathbf{r}(t) \cdot \mathbf{r}(t)=c$, then $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$.

## Example 4 (Using properties of the derivative)

For the vector-valued functions given by

$$
\mathbf{r}(t)=\frac{1}{t} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k} \quad \text { and } \quad \mathbf{u}(t)=t^{2} \mathbf{i}-2 t \mathbf{j}+\mathbf{k}
$$

find a. $D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)] \quad$ and b. $D_{t}\left[\mathbf{u}(t) \times \mathbf{u}^{\prime}(t)\right]$.
a. Because $\mathbf{r}^{\prime}(t)=-\frac{1}{t^{2}} \mathbf{i}+\frac{1}{t} \mathbf{k}$ and $\mathbf{u}^{\prime}(t)=2 t \mathbf{i}-2 \mathbf{j}$, you have

$$
\begin{aligned}
D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]= & \mathbf{r}(t) \cdot \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{u}(t) \\
= & \left(\frac{1}{t} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k}\right) \cdot(2 t \mathbf{i}-2 \mathbf{j}) \\
& +\left(-\frac{1}{t^{2}} \mathbf{i}+\frac{1}{t} \mathbf{k}\right) \cdot\left(t^{2} \mathbf{i}-2 t \mathbf{j}+\mathbf{k}\right) \\
= & 2+2+(-1)+\frac{1}{t}=3+\frac{1}{t}
\end{aligned}
$$

b. Because $\mathbf{u}^{\prime}(t)=2 t \mathbf{i}-2 \mathbf{j}$ and $\mathbf{u}^{\prime \prime}(t)=2 \mathbf{i}$, you have

$$
\begin{aligned}
D_{t}\left[\mathbf{u}(t) \times \mathbf{u}^{\prime}(t)\right] & =\left[\mathbf{u}(t) \times \mathbf{u}^{\prime \prime}(t)\right]+\left[\mathbf{u}^{\prime}(t) \times \mathbf{u}^{\prime}(t)\right] \\
=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
t^{2} & -2 t & 1 \\
2 & 0 & 0
\end{array}\right|+\mathbf{0} & \\
& =\left|\begin{array}{cc}
-2 t & 1 \\
0 & 0
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
t^{2} & 1 \\
2 & 0
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
t^{2} & -2 t \\
2 & 0
\end{array}\right| \mathbf{k} \\
& =0 \mathbf{i}-(-2) \mathbf{j}+4 t \mathbf{k}=2 \mathbf{j}+4 t \mathbf{k} .
\end{aligned}
$$

## Integration of vector-valued functions

The following definition is a rational consequence of the definition of the derivative of a vector-valued function.

## Definition 12.5 (Integration of vector-valued functions)

- If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where $f$ and $g$ are continuous on $[a, b]$, then the indefinite integral(antiderivative) of $\mathbf{r}$ is

$$
\int \mathbf{r}(t) \mathrm{d} t=\left[\int f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int g(t) \mathrm{d} t\right] \mathbf{j} \quad \text { Plane }
$$

and its definite integral over the interval $a \leq t \leq b$ is

$$
\int_{a}^{b} \mathbf{r}(t) \mathrm{d} t=\left[\int_{a}^{b} f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) \mathrm{d} t\right] \mathbf{j}
$$

## Definition 12.5 (continue)

- If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where $f, g$, and $h$ are continuous on $[a, b]$, then the indefinite integral (antiderivative) of $\mathbf{r}$ is
$\int \mathbf{r}(t) \mathrm{d} t=\left[\int f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int g(t) \mathrm{d} t\right] \mathbf{j}+\left[\int h(t) \mathrm{d} t\right] \mathbf{k} \quad$ Space and its definite integral over the interval $a \leq t \leq b$ is

$$
\int_{a}^{b} \mathbf{r}(t) \mathrm{d} t=\left[\int_{a}^{b} f(t) \mathrm{d} t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) \mathrm{d} t\right] \mathbf{j}+\left[\int_{a}^{b} h(t) \mathrm{d} t\right] \mathbf{k} .
$$

- The antiderivative of a vector-valued function is a family of vector-valued functions all differing by a constant vector $\mathbf{C}$.
- For instance, if $\mathbf{r}(t)$ is a three-dimensional vector-valued function, then for the indefinite integral $\int \mathbf{r}(t) \mathrm{d} t$, you obtain three constants of integration
$\int f(t) \mathrm{d} t=F(t)+C_{1}, \int g(t) \mathrm{d} t=G(t)+C_{2}, \int h(t) \mathrm{d} t=H(t)+C_{3}$
where $F^{\prime}(t)=f(t), G^{\prime}(t)=g(t)$, and $H^{\prime}(t)=h(t)$.
- These three scalar constants produce one vector constant of integration,

$$
\begin{aligned}
\int \mathbf{r}(t) \mathrm{d} t & =\left[F(t)+C_{1}\right] \mathbf{i}+\left[G(t)+C_{2}\right] \mathbf{j}+\left[H(t)+C_{3}\right] \mathbf{k} \\
& =[F(t) \mathbf{i}+G(t) \mathbf{j}+H(t) \mathbf{k}]+\left[C_{1} \mathbf{i}+C_{2} \mathbf{j}+C_{3} \mathbf{k}\right] \\
& =\mathbf{R}(t)+\mathbf{C}
\end{aligned}
$$

where $\mathbf{R}^{\prime}(t)=\mathbf{r}(t)$.

## Example 5 (Integrating a vector-valued function)

Find the indefinite integral $\int(t \mathbf{i}+3 \mathbf{j}) \mathrm{d} t$.
Integrating on a component-by-component basis produces

$$
\int(t \mathbf{i}+3 \mathbf{j}) \mathrm{d} t=\frac{t^{2}}{2} \mathbf{i}+3 t \mathbf{j}+\mathbf{C} .
$$

## Example 6 (Definite Integral of a vector-valued function)

Evaluate the integral

$$
\int_{0}^{1} \mathbf{r}(t) \mathrm{d} t=\int_{0}^{1}\left(\sqrt[3]{t} \mathbf{i}+\frac{1}{t+1} \mathbf{j}+e^{-t} \mathbf{k}\right) \mathrm{d} t
$$

$$
\begin{aligned}
\int_{0}^{1} \mathbf{r}(t) \mathrm{d} t & =\left(\int_{0}^{1} t^{1 / 3} \mathrm{~d} t\right) \mathbf{i}+\left(\int_{0}^{1} \frac{1}{t+1} \mathrm{~d} t\right) \mathbf{j}+\left(\int_{0}^{1} e^{-t} \mathrm{~d} t\right) \mathbf{k} \\
& =\left[\left(\frac{3}{4}\right) t^{4 / 3}\right]_{0}^{1} \mathbf{i}+[\ln |t+1|]_{0}^{1} \mathbf{j}+\left[-e^{-t}\right]_{0}^{1} \mathbf{k} \\
& =\frac{3}{4} \mathbf{i}+(\ln 2) \mathbf{j}+\left(1-\frac{1}{e}\right) \mathbf{k}
\end{aligned}
$$

## Example 7 (The antiderivative of a vector-valued function)

Find the antiderivative of

$$
\mathbf{r}^{\prime}(t)=\cos 2 t \mathbf{i}-2 \sin t \mathbf{j}+\frac{1}{1+t^{2}} \mathbf{k}
$$

that satisfies the initial condition $\mathbf{r}(0)=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

$$
\begin{aligned}
\mathbf{r}(t) & =\int \mathbf{r}^{\prime}(t) \mathrm{d} t=\left(\int \cos 2 t \mathrm{~d} t\right) \mathbf{i}+\left(\int-2 \sin t \mathrm{~d} t\right) \mathbf{j}+\left(\int \frac{1}{1+t^{2}} \mathrm{~d} t\right) \\
& =\left(\frac{1}{2} \sin 2 t+C_{1}\right) \mathbf{i}+\left(2 \cos t+C_{2}\right) \mathbf{j}+\left(\arctan t+C_{3}\right) \mathbf{k}
\end{aligned}
$$

- Letting $t=0$ and using the fact that $\mathbf{r}(0)=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$, you have

$$
\mathbf{r}(0)=\left(0+C_{1}\right) \mathbf{i}+\left(2+C_{2}\right) \mathbf{j}+\left(0+C_{3}\right) \mathbf{k}=3 \mathbf{i}+(-2) \mathbf{j}+\mathbf{k} .
$$

- Equating corresponding components produces

$$
C_{1}=3, \quad 2+C_{2}=-2, \quad \text { and } \quad C_{3}=1
$$

So, the antiderivative that satisfies the given initial condition is

$$
\mathbf{r}(t)=\left(\frac{1}{2} \sin 2 t+3\right) \mathbf{i}+(2 \cos t-4) \mathbf{j}+(\arctan t+1) \mathbf{k}
$$

